417 research outputs found

    Cost-Savings of Implementing Site-Specific Ground Motion Response Analysis in Design of Mississippi Embayment Bridges

    Get PDF
    Deep dynamic site characterization and a site-specific ground motion response analysis (SSGMRA) were conducted for a bridge site in Monette, Arkansas. The SSGMRA indicated the design acceleration response spectrum determined using the American Association of State Highway and Transportation Officials (AASHTO) general seismic procedure could be reduced by 1/3 for the short period range due to attenuation of the short-period ground motions. The steel girder pile-bent bridge, originally designed using the AASHTO general seismic design procedure, was redesigned using the updated seismic demands estimated from SSGMRA. A cost-savings analysis was then conducted to determine the potential savings associated with conducting the SSGMRA. By designing based on the results of the SSGMRA, a potential savings of $205,000 or 7% of the original bridge construction cost could be achieved for the study bridge. Items that contributed most to the cost savings were the pile and embankment construction

    Container and VM Visualization for Rapid Forensic Analysis

    Get PDF
    Cloud-hosted software such as virtual machines and containers are notoriously difficult to access, observe, and inspect during ongoing security events. This research describes a new, out-of-band forensic tool for rapidly analyzing cloud based software. The proposed tool renders two-dimensional visualizations of container contents and virtual machine disk images. The visualizations can be used to identify container / VM contents, pinpoint instances of embedded malware, and find modified code. The proposed new forensic tool is compared against other forensic tools in a double-blind experiment. The results confirm the utility of the proposed tool. Implications and future research directions are also described

    Framework for Real-Time Event Detection using Multiple Social Media Sources

    Get PDF
    Information about events happening in the real world are generated online on social media in real-time. There is substantial research done to detect these events using information posted on websites like Twitter, Tumblr, and Instagram. The information posted depends on the type of platform the website relies upon, such as short messages, pictures, and long form articles. In this paper, we extend an existing real-time event detection at onset approach to include multiple websites. We present three different approaches to merging information from two different social media sources. We also analyze the strengths and weaknesses of these approaches. We validate the detected events using newswire data that is collected during the same time period. Our results show that including multiple sources increases the number of detected events and also increase the quality of detected events.

    Network Attack Detection using an Unsupervised Machine Learning Algorithm

    Get PDF
    With the increase in network connectivity in today\u27s web-enabled environments, there is an escalation in cyber-related crimes. This increase in illicit activity prompts organizations to address network security risk issues by attempting to detect malicious activity. This research investigates the application of a MeanShift algorithm to detect an attack on a network. The algorithm is validated against the KDD 99 dataset and presents an accuracy of 81.2% and detection rate of 79.1%. The contribution of this research is two-fold. First, it provides an initial application of a MeanShift algorithm on a network traffic dataset to detect an attack. Second, it provides the foundation for future research involving the application of MeanShift algorithm in the area of network attack detection

    Insight from a Containerized Kubernetes Workload Introspection

    Get PDF
    Developments in virtual containers, especially in the cloud infrastructure, have led to diversification of jobs that containers are being used to support, particularly in the big data and machine learning spaces. The diversification has been powered by the adoption of orchestration systems that marshal fleets of containers to accomplish complex programming tasks. The additional components in the vertical technology stack, plus the continued horizontal scaling have led to questions regarding how to forensically analyze complicated technology stacks. This paper proposed a solution through the use of introspection. An exploratory case study has been conducted on a bare-metal cloud that utilizes Kubernetes, the introspection tool Prometheus, and Apache Spark. The contribution of this research is two-fold. First, it provides empirical support that introspection tools can acquire forensically viable data from different levels of a technology stack. Second, it provides the ground work for comparisons between different virtual container platforms

    Machine Learning-Based Android Malware Detection Using Manifest Permissions

    Get PDF
    The Android operating system is currently the most prevalent mobile device operating system holding roughly 54 percent of the total global market share. Due to Android’s substantial presence, it has gained the attention of those with malicious intent, namely, malware authors. As such, there exists a need for validating and improving current malware detection techniques. Automated detection methods such as anti-virus programs are critical in protecting the wide variety of Android-powered mobile devices on the market. This research investigates effectiveness of four different machine learning algorithms in conjunction with features selected from Android manifest file permissions to classify applications as malicious or benign. Case study results, on a test set consisting of 5,243 samples, produce accuracy, recall, and precision rates above 80%. Of the considered algorithms (Random Forest, Support Vector Machine, Gaussian Naïve Bayes, and K-Means), Random Forest performed the best with 82.5% precision and 81.5% accuracy

    Insight from a Docker Container Introspection

    Get PDF
    Large-scale adoption of virtual containers has stimulated concerns by practitioners and academics about the viability of data acquisition and reliability due to the decreasing window to gather relevant data points. These concerns prompted the idea that introspection tools, which are able to acquire data from a system as it is running, can be utilized as both an early warning system to protect that system and as a data capture system that collects data that would be valuable from a digital forensic perspective. An exploratory case study was conducted utilizing a Docker engine and Prometheus as the introspection tool. The research contribution of this research is two-fold. First, it provides empirical support for the idea that introspection tools can be utilized to ascertain differences between pristine and infected containers. Second, it provides the ground work for future research conducting an analysis of large-scale containerized applications in a virtual cloud

    The Intersection of Persuasive System Design and Personalization in Mobile Health: Statistical Evaluation

    Get PDF
    Background: Persuasive technology is an umbrella term that encompasses software (eg, mobile apps) or hardware (eg, smartwatches) designed to influence users to perform preferable behavior once or on a long-term basis. Considering the ubiquitous nature of mobile devices across all socioeconomic groups, user behavior modification thrives under the personalized care that persuasive technology can offer. However, there is no guidance for developing personalized persuasive technologies based on the psychological characteristics of users. Objective: This study examined the role that psychological characteristics play in interpreted mobile health (mHealth) screen perceived persuasiveness. In addition, this study aims to explore how users’ psychological characteristics drive the perceived persuasiveness of digital health technologies in an effort to assist developers and researchers of digital health technologies by creating more engaging solutions. Methods: An experiment was designed to evaluate how psychological characteristics (self-efficacy, health consciousness, health motivation, and the Big Five personality traits) affect the perceived persuasiveness of digital health technologies, using the persuasive system design framework. Participants (n=262) were recruited by Qualtrics International, Inc, using the web-based survey system of the XM Research Service. This experiment involved a survey-based design with a series of 25 mHealth app screens that featured the use of persuasive principles, with a focus on physical activity. Exploratory factor analysis and linear regression were used to evaluate the multifaceted needs of digital health users based on their psychological characteristics. Results: The results imply that an individual user’s psychological characteristics (self-efficacy, health consciousness, health motivation, and extraversion) affect interpreted mHealth screen perceived persuasiveness, and combinations of persuasive principles and psychological characteristics lead to greater perceived persuasiveness. The F test (ie, ANOVA) for model 1 was significant (F9,6540=191.806; PR2 of 0.208, indicating that the demographic variables explained 20.8% of the variance in perceived persuasiveness. Gender was a significant predictor, with women having higher perceived persuasiveness (P=.008) relative to men. Age was a significant predictor of perceived persuasiveness with individuals aged 40 to 59 years (PPF13,6536=341.035; PR2 of 0.403, indicating that the demographic variables self-efficacy, health consciousness, health motivation, and extraversion together explained 40.3% of the variance in perceived persuasiveness. Conclusions: This study evaluates the role that psychological characteristics play in interpreted mHealth screen perceived persuasiveness. Findings indicate that self-efficacy, health consciousness, health motivation, extraversion, gender, age, and education significantly influence the perceived persuasiveness of digital health technologies. Moreover, this study showed that varying combinations of psychological characteristics and demographic variables affected the perceived persuasiveness of the primary persuasive technology category

    Deception Detection Using Machine Learning

    Get PDF
    Today’s digital society creates an environment potentially conducive to the exchange of deceptive information. The dissemination of misleading information can have severe consequences on society. This research investigates the possibility of using shared characteristics among reviews, news articles, and emails to detect deception in text-based communication using machine learning techniques. The experiment discussed in this paper examines the use of Bag of Words and Part of Speech tag features to detect deception on the aforementioned types of communication using Neural Networks, Support Vector Machine, Naïve Bayesian, Random Forest, Logistic Regression, and Decision Tree. The contribution of this paper is two-fold. First, it provides initial insight into the identification of text communication cues useful in detecting deception across different types of text-based communication. Second, it provides a foundation for future research involving the application of machine learning algorithms to detect deception on different types of text communication
    corecore